Python学习笔记

Python学习笔记

廖雪峰python2.7教程

Python基础

1
2
3
4
5
6
# print absolute value of an integer:
a = 100
if a >= 0:
print a
else:
print -a

#开头的语句为注释
每一行都是一个语句,当语句以冒号“:”结尾时,缩进的语句视为代码块。

数据类型和变量

数据类型

在Python中,能够直接处理的数据类型有以下几种:

  • 整数:Python可以处理任意大小的整数,包括负整数
  • 浮点数:数学写法,如1.23;科学计数法表示,1.23x109就是1.23e9
  • 字符串:字符串是以’’或””括起来的任意文本,如果字符串内部既包含’又包含”怎么办?可以用转义字符\来标识,
    1. r’’表示’’内部的字符串默认不转义
  1. 字符串内部有很多换行,用\n写在一行里不好阅读,为了简化,Python允许用’’’…’’’的格式表示多行内容
  • 布尔值:True、False表示布尔值(注意大小写)
  • 空值:None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

变量

在Python中,等号=是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同类型的变量

这种变量本身类型不固定的语言称之为动态语言,与之对应的是静态语言。静态语言在定义变量时必须指定变量类型,如果赋值的时候类型不匹配,就会报错。

把一个变量a赋值给另一个变量b,这个操作实际上是把变量b指向变量a所指向的数据

常量

通常用全部大写的变量名表示常量
Python根本没有任何机制保证常量不会被改变,所以,用全部大写的变量名表示常量只是一个习惯上的用法

字符串和编码

  • ASCII编码:1个字节
  • Unicode编码:Unicode把所有语言都统一到一套编码里,通常是2个字节
  • UTF-8编码:可变长编码,英文字母被编码成1个字节,汉字通常是3个字节,只有很生僻的字符才会被编码成4-6个字节

计算机系统通用的字符编码工作方式:在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传输的时候,就转换为UTF-8编码。

由于Python源代码也是一个文本文件,所以,当你的源代码中包含中文的时候,在保存源代码时,就需要务必指定保存为UTF-8编码。当Python解释器读取源代码时,为了让它按UTF-8编码读取,我们通常在文件开头写上这两行:

1
2
#!/usr/bin/env python
# -*- coding: utf-8 -*-

第一行注释是为了告诉Linux/OS X系统,这是一个Python可执行程序,Windows系统会忽略这个注释;
第二行注释是为了告诉Python解释器,按照UTF-8编码读取源代码,否则,你在源代码中写的中文输出可能会有乱码。

使用list和tuple

list

list是一种有序的集合,可以随时添加和删除其中的元素。

索引是从0开始,如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素,以此类推,可以获取倒数第2个、倒数第3个.

  • 往list中追加元素到末尾:用append()方法
  • 把元素插入到指定的位置:用insert()方法
  • 删除list末尾的元素:用pop()方法
  • 删除指定位置的元素:用pop(i)方法
  • 把某个元素替换成别的元素,可以直接赋值给对应的索引位置

tuple

tuple和list非常类似,但是tuple一旦初始化就不能修改

条件判断和循环

条件判断

1
2
3
4
5
6
7
8
if <条件判断1>:
<执行1>
elif <条件判断2>:
<执行2>
elif <条件判断3>:
<执行3>
else:
<执行4>

循环

for…in循环:依次把list或tuple中的每个元素迭代出来

1
2
3
4
sum = 0
for x in range(101):
sum = sum + x
print sum

while循环

1
2
3
4
5
6
sum = 0
n = 99
while n > 0:
sum = sum + n
n = n - 2
print sum

raw_input:读取用户的输入,这样可以自己输入
raw_input()读取的内容永远以字符串的形式返回,要根据需要进行转换

1
2
3
4
5
birth = int(raw_input('birth: '))
if birth < 2000:
print '00前'
else:
print '00后'

使用dict和set

dict

dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

  • 通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value

    返回None的时候Python的交互式命令行不显示结果。

  • 要删除一个key,用pop(key)方法,对应的value也会从dict中删除

和list比较,dict有以下几个特点:

  1. 查找和插入的速度极快,不会随着key的增加而增加;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的时间随着元素的增加而增加;
  2. 占用空间小,浪费内存很少。
    所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

  • 要创建一个set,需要提供一个list作为输入集合
  • 重复元素在set中自动被过滤
  • 通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果
  • 通过remove(key)方法可以删除元素

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。

函数

调用函数

调用函数的时候,如果传入的参数数量不对,或者传入的参数数量是对的,但参数类型不能被函数所接受,会报TypeError的错误,并且给出错误信息

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”,可以通过变量调用函数

定义函数

定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

1
2
3
4
5
def my_abs(x):
if x >= 0:
return x
else:
return -x

空函数

定义一个什么事也不做的空函数,可以用pass语句:

1
2
def nop():
pass

pass用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。缺少了pass,代码运行就会有语法错误。

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError。
但是如果参数类型不对,Python解释器就无法帮我们检查。则需要我们自己添加参数检查,数据类型检查可以用内置函数isinstance实现:

1
2
3
4
5
6
7
def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x

返回多个值

函数可以同时返回多个值,但其实就是一个tuple。在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

函数的参数

默认参数

1
2
3
4
5
def enroll(name, gender, age=6, city='Beijing'):
print 'name:', name
print 'gender:', gender
print 'age:', age
print 'city:', city

默认参数设置要求:

  • 必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面)
  • 如何设置默认参数:当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
  • 默认参数必须指向不变对象!

可变参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。

1
2
3
4
5
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum

定义可变参数和定义list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数

如果已经有一个list或者tuple,在list或tuple前面加一个号,把list或tuple的元素变成可变参数传进去 args是可变参数,args接收的是一个tuple;

关键字参数

关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。

1
2
3
4
5
def person(name, age, **kw):
print 'name:', name, 'age:', age, 'other:', kw

>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去.
**kw是关键字参数,kw接收的是一个dict。

参数组合

可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。

1
2
def func(a, b, c=0, *args, **kw):
print 'a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw

递归函数

函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

1
2
3
4
5
6
7
8
9
//递归
def fact(n):
return fact_iter(n, 1)

//尾递归
def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

高级特性

一行代码能实现的功能,决不写5行代码。

切片

取一个list或tuple的部分元素

1
2
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略

L[-1]取倒数第一个元素,那么它同样支持倒数切片

字符串也可以用切片操作,只是操作结果仍是字符串

迭代

给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

1
2
3
4
5
6
7
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print key
...
a
c
b

Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上

dict迭代:
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.itervalues(),如果要同时迭代key和value,可以用for k, v in d.iteritems()

通过collections模块的Iterable类型判断一个对象是不是可迭代对象

1
2
3
4
5
6
7
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
//生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

//生成[1x1, 2x2, 3x3, ..., 10x10]
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

//for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

//使用两层循环,可以生成全排列
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

生成器

通过列表生成式,我们可以直接创建一个列表。
如果列表元素可以按照某种算法推算出来,在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

方法一:把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x104feab40>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。正确的方法是使用for循环,因为generator也是可迭代对象

方法二:如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
//函数
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1

//把fib函数变成generator,只需要把print b改为yield b就可以了
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1

如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator。
generator,在执行过程中,遇到yield就中断,下次又继续执行。

函数式编程

函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

高阶函数

  • 变量可以指向函数
    函数本身也可以赋值给变量,即:变量可以指向函数

  • 函数名也是变量
    函数名其实就是指向函数的变量!

  • 传入函数
    变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数

    1
    2
    def add(x, y, f):
    return f(x) + f(y)

map/reduce

map

map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。

1
2
3
4
5
>>> def f(x):
... return x * x
...
>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

reduce

reduce把一个函数作用在一个序列上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

1
2
3
4
5
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

filter

filter()函数用于过滤序列,和map()类似,filter()也接收一个函数和一个序列。和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

1
2
3
4
5
6
//删掉偶数,只保留奇数
def is_odd(n):
return n % 2 == 1

filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])
# 结果: [1, 5, 9, 15]

sorted

Python内置的sorted()函数就可以对list进行排序, sorted()函数也是一个高阶函数,它还可以接收一个比较函数来实现自定义的排序

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> sorted([36, 5, 12, 9, 21])
[5, 9, 12, 21, 36]

//实现倒序排序
def reversed_cmp(x, y):
if x > y:
return -1
if x < y:
return 1
return 0

>>> sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]

返回函数

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum

//调用lazy_sum()时,返回的并不是求和结果,而是求和函数
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function sum at 0x10452f668>

//调用函数f时,才真正计算求和的结果
>>> f()
25

当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数.

闭包

当一个函数返回了一个函数后,其内部的局部变量还被新函数引用。

返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> def count():
... fs = []
... for i in range(1, 4):
... def f(j):
... def g():
... return j*j
... return g
... fs.append(f(i))
... return fs
...
>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9

匿名函数

在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便.

关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

装饰器

假设我们要增强函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。

1
2
3
4
5
6
def log(func):
def wrapper(*args, **kw):
//函数对象有一个__name__属性,可以拿到函数的名字。
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。借助Python的@语法,把decorator置于函数的定义处:

1
2
3
@log
def now():
print('2015-3-25')

在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

偏函数

ython的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。
functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

1
2
3
4
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64

创建偏函数时,实际上可以接收函数对象、*args和**kw这3个参数

1
2
3
4
int2('10010')
//相当于
kw = { base: 2 }
int('10010', **kw)

1
2
3
4
5
6
7
max2 = functools.partial(max, 10)

//会把10作为*args的一部分自动加到左边
max2(5, 6, 7)
//相当于
args = (10, 5, 6, 7)
max(*args)

模块

为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。
好处:

  • 提高了代码的可维护性
  • 编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用,包括Python内置的模块和来自第三方的模块
  • 可以避免函数名和变量名冲突

如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。
引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。
每一个包目录下面都会有一个init.py的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。init.py可以是空文件,也可以有Python代码,因为init.py本身就是一个模块,而它的模块名就是包名。

使用模块

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
//让这个hello.py文件直接在Unix/Linux/Mac上运行
#!/usr/bin/env python

//表示.py文件本身使用标准UTF-8编码
# -*- coding: utf-8 -*-

//一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释
' a test module '

//使用__author__变量把作者写进去
__author__ = 'Michael Liao'

import sys

def test():
args = sys.argv
if len(args)==1:
print 'Hello, world!'
elif len(args)==2:
print 'Hello, %s!' % args[1]
else:
print 'Too many arguments!'

if __name__=='__main__':
test()

第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行
第5行注释表示.py文件本身使用标准UTF-8编码
第8行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;
第11行使用author变量把作者写进去
第13行导入sys模块后,我们就有了变量sys指向该模块,利用sys这个变量,就可以访问sys模块的所有功能

别名

导入模块时,还可以使用别名import ... as,这样,可以在运行时根据当前环境选择最合适的模块。比如Python标准库一般会提供StringIO和cStringIO两个库,这两个库的接口和功能是一样的,但是cStringIO是C写的,速度更快,所以,你会经常看到这样的写法:

1
2
3
4
5
//优先导入cStringIO。如果有些平台不提供cStringIO,还可以降级使用StringIO
try:
import cStringIO as StringIO
except ImportError: # 导入失败会捕获到ImportError
import StringIO

导入cStringIO时,用import … as …指定了别名StringIO,因此,后续代码引用StringIO即可正常工作。

作用域

在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。

正常的函数和变量名是公开的(public),可以被直接引用,比如:abc,x123,PI等

类似xxx这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的authorname就是特殊变量,hello模块定义的文档注释也可以用特殊变量doc访问,我们自己的变量一般不要用这种变量名

类似_xxx和xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc,abc等

private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。

1
2
3
4
5
6
7
8
9
10
11
def _private_1(name):
return 'Hello, %s' % name

def _private_2(name):
return 'Hi, %s' % name

def greeting(name):
if len(name) > 3:
return _private_1(name)
else:
return _private_2(name)

我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。

安装第三方模块

通过pip install XXX命令来安装第三方模块
通过import XXX导入第三方库

模块搜索路径

当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:

1
2
3
4
>>> import mymodule
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named mymodule

默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:

1
2
3
>>> import sys
>>> sys.path
['', '/Library/Python/2.7/site-packages/pycrypto-2.6.1-py2.7-macosx-10.9-intel.egg', '/Library/Python/2.7/site-packages/PIL-1.1.7-py2.7-macosx-10.9-intel.egg', ...]

如果我们要添加自己的搜索目录,有两种方法:

  1. 直接修改sys.path,添加要搜索的目录:
    1
    2
    >>> import sys
    >>> sys.path.append('/Users/michael/my_py_scripts')

这种方法是在运行时修改,运行结束后失效。

  1. 设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。

使用future

Python的每个新版本都会增加一些新的功能,或者对原来的功能作一些改动。有些改动是不兼容旧版本的,也就是在当前版本运行正常的代码,到下一个版本运行就可能不正常了。

Python提供了future模块,把下一个新版本的特性导入到当前版本,于是我们就可以在当前版本中测试一些新版本的特性。

为了适应Python 3.x的新的字符串的表示方法,在2.7版本的代码中,可以通过unicode_literals来使用Python 3.x的新的语法:

1
2
3
4
5
6
7
8
# still running on Python 2.7

from __future__ import unicode_literals

print '\'xxx\' is unicode?', isinstance('xxx', unicode)
print 'u\'xxx\' is unicode?', isinstance(u'xxx', unicode)
print '\'xxx\' is str?', isinstance('xxx', str)
print 'b\'xxx\' is str?', isinstance(b'xxx', str)

面向对象编程

类和实例

通过class关键字定义类

1
2
class Student(object):
pass

class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,如果没有合适的继承类,就使用object类,这是所有类最终都会继承的类。

1
2
3
4
5
>>> bart = Student()
>>> bart
<__main__.Student object at 0x10a67a590>
>>> Student
<class '__main__.Student'>

可以看到,变量bart指向的就是一个Student的object,后面的0x10a67a590是内存地址,每个object的地址都不一样,而Student本身则是一个类。

由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的init方法,在创建实例的时候,就把name,score等属性绑上去:

1
2
3
4
5
class Student(object):

def __init__(self, name, score):
self.name = name
self.score = score

注意到__init__方法的第一个参数永远是self,表示创建的实例本身,因此,在__init__方法内部,就可以把各种属性绑定到self,因为self就指向创建的实例本身。

数据封装

封装数据的函数是和类本身关联起来的,我们称之为类的方法

访问限制

让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,不能直接访问是因为Python解释器对外把__xxx开头的变量改成了_class__xxx,所以,仍然可以通过_class__xxx来访问__xxx变量

给属性设为私有变量后就无法直接访问了,只能通过给类增加方法来访问数据,为什么要定义一个方法大费周折?
因为在方法中,可以对参数做检查,避免传入无效的参数

在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量

以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

继承和多态

继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写;

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。

有了继承,才能有多态。在调用类实例方法的时候,尽量把变量视作父类类型,这样,所有子类类型都可以正常被接收

获取对象信息

使用type()

Python把每种type类型都定义好了常量,放在types模块里,使用之前,需要先导入

使用isinstance()

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数
isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。

使用dir()

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list

面向对象高级编程

使用__slots__

ython允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class能添加的属性

1
2
3
4
5
6
7
8
9
10
11
>>> class Student(object):
... __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称


>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

使用__slots__要注意,__slots__定义的属性仅对当前类起作用,对继承的子类是不起作用,除非在子类中也定义__slots__,这样,子类允许定义的属性就是自身的__slots__加上父类的__slots__

使用@property

@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查又可以用类似属性这样简单的方式来访问类的变量,这样,程序运行时就减少了出错的可能性。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Student(object):

@property
def score(self):
return self._score

@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value


>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性

多重继承

通过多重继承,一个子类就可以同时获得多个父类的所有功能。

Mixin

一个类同时继承多个类,这种设计则成为Mixin

定制类

形如__xxx__的变量或者函数名,在Python中是有特殊用途

__str__

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print Student('Michael')
<__main__.Student object at 0x109afb190>

#__str__()方法,返回一个好看的字符串,容易看出实例内部重要的数据
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print Student('Michael')
Student object (name: Michael)

直接敲变量不用print打出来的又不好看了,因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的,解决方法:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__

__iter__

一个类想被用于for … in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的next()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

1
2
3
4
5
6
7
8
9
10
11
12
13
#以斐波那契数列为例,写一个Fib类,可以作用于for循环
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b

def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己

def next(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration();
return self.a # 返回下一个值

__getitem__

实现__iter__()方法后虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行。
要表现得像list那样按照下标取出元素,需要实现__getitem__()方法

1
2
3
4
5
6
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a

但是list有个神奇的切片方法,__getitem__()传入的参数可以是一个int,也可以是一个切片对象slice,所以只要加上判断就可以实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice):
start = n.start
stop = n.stop
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
#没有对step参数作处理,也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的

如果把对象看成dict,__getitem__()的参数也可能是一个可以作key的object,例如str

与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。

__getattr__

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。
要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。

1
2
3
4
5
6
7
8
class Student(object):

def __init__(self):
self.name = 'Michael'

def __getattr__(self, attr):
if attr=='score':
return 99

也可以返回一个函数

只有在没有找到属性的情况下,才调用__getattr__,已有的属性,不会在__getattr__中查找。

可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段, 从而可以实现针对完全动态的情况作调用。

现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:

1
2
http://api.server/user/friends
http://api.server/user/timeline/list

如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。

利用完全动态的__getattr__,我们可以写出一个链式调用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Chain(object):

def __init__(self, path=''):
self._path = path

def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))

def __str__(self):
return self._path


>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!

还有些REST API会把参数放到URL中,比如GitHub的API:

1
2
3
4
GET /users/:user/repos

#调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用
Chain().users('michael').repos

__call__

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。

1
2
3
4
5
6
7
8
9
10
11
class Student(object):
def __init__(self, name):
self.name = name

def __call__(self):
print('My name is %s.' % self.name)


>>> s = Student('Michael')
>>> s()
My name is Michael.

__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。

通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。

使用元类

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

type()

type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)…的定义:

1
2
3
4
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class

要创建一个class对象,type()函数依次传入3个参数:

  1. class的名称;
  2. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
  3. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。

metaclass

metaclass,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。
metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

需要再学

错误、调试和测试

错误处理

try

1
2
3
4
5
6
7
8
9
try:
print 'try...'
r = 10 / 0
print 'result:', r
except ZeroDivisionError, e:
print 'except:', e
finally:
print 'finally...'
print 'END'

当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except语句块,执行完except后,如果有finally语句块,则执行finally语句块

finally如果有,则一定会被执行(可以没有finally语句)
可以有多个except来捕获不同类型的错误
如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句
常见的错误类型继承关系:https://docs.python.org/2/library/exceptions.html#exception-hierarchy

调用堆栈

解读错误信息是定位错误的关键。让Python解释器来打印出错误堆栈,从上往下看整个错误的调用函数链

记录错误

Python内置的logging模块可以非常容易地记录错误信息,通过配置,logging还可以把错误记录到日志文件里,方便事后排查。

抛出错误

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# err.py
def foo(s):
n = int(s)
return 10 / n

def bar(s):
try:
return foo(s) * 2
except StandardError, e:
print 'Error!'
raise

def main():
bar('0')

main()

在bar()函数中,我们明明已经捕获了错误,但是,打印一个Error!后,又把错误通过raise语句抛出去了,这种处理方式相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。

调试

第一种方法简单直接粗暴有效,就是用print把可能有问题的变量打印出来,执行后在输出中查找打印的变量值,用print最大的坏处是将来还得删掉它,想想程序里到处都是print,运行结果也会包含很多垃圾信息。我们使用断言来解决。

断言

凡是用print来辅助查看的地方,都可以用断言(assert)来替代:

1
2
3
4
5
6
7
8
# err.py
def foo(s):
n = int(s)
assert n != 0, 'n is zero!'
return 10 / n

def main():
foo('0')

assert的意思是,表达式n != 0应该是True,否则,后面的代码就会出错。
如果断言失败,assert语句本身就会抛出AssertionError:

1
2
3
4
$ python err.py
Traceback (most recent call last):
...
AssertionError: n is zero!

启动Python解释器时可以用-O参数来关闭assert
python -O err.py关闭后,你可以把所有的assert语句当成pass来看。

logging

和assert比,logging不会抛出错误,而且可以输出到文件
允许你指定记录信息的级别,有debug,info,warning,error等几个级别,当我们指定level=INFO时,logging.debug就不起作用了。同理,指定level=WARNING后,debug和info就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。

logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。

pdb

启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。python -m pdb err.py以参数-m pdb启动后,输入命令n可以单步执行代码,任何时候都可以输入命令p 变量名来查看变量,输入命令q结束调试,退出程序.

pdb.set_trace()

这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点.
运行代码,程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行

IDE

http://www.jetbrains.com/pycharm/
edu.cn结尾邮箱可以免费使用正版。

单元测试

测试驱动开发:以测试为驱动的开发模式最大的好处就是确保一个程序模块的行为符合我们设计的测试用例。在将来修改的时候,可以极大程度地保证该模块行为仍然是正确的。

单元测试可以有效地测试某个程序模块的行为,是未来重构代码的信心保证。
单元测试的测试用例要覆盖常用的输入组合、边界条件和异常。
单元测试代码要非常简单,如果测试代码太复杂,那么测试代码本身就可能有bug。
单元测试通过了并不意味着程序就没有bug了,但是不通过程序肯定有bug。

编写单元测试时,我们需要编写一个测试类,从unittest.TestCase继承。

以test开头的方法就是测试方法,不以test开头的方法不被认为是测试方法,测试的时候不会被执行。

对每一类测试都需要编写一个test_xxx()方法。由于unittest.TestCase提供了很多内置的条件判断,我们只需要调用这些方法就可以断言输出是否是我们所期望的。
最常用的断言就是assertEquals():

1
self.assertEquals(abs(-1), 1) # 断言函数返回的结果与1相等

另一种重要的断言就是期待抛出指定类型的Error,比如通过d[‘empty’]访问不存在的key时,断言会抛出KeyError:

1
2
with self.assertRaises(KeyError):
value = d['empty']

而通过d.empty访问不存在的key时,我们期待抛出AttributeError:

1
2
with self.assertRaises(AttributeError):
value = d.empty

运行单元测试

编写好单元测试,我们就可以运行单元测试。最简单的运行方式是在mydict_test.py的最后加上两行代码:

1
2
if __name__ == '__main__':
unittest.main()

这样就可以把单元测试当做正常的python脚本运行

另一种更常见的方法是在命令行通过参数-m unittest直接运行单元测试:

1
2
3
4
5
6
$ python -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s

OK

这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试。

setUp与tearDown

可以在单元测试中编写两个特殊的setUp()和tearDown()方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。

setUp()和tearDown()方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()方法中连接数据库,在tearDown()方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:

1
2
3
4
5
6
7
class TestDict(unittest.TestCase):

def setUp(self):
print 'setUp...'

def tearDown(self):
print 'tearDown...'

可以再次运行测试看看每个测试方法调用前后是否会打印出setUp…和tearDown…

文档测试

Python内置的“文档测试”(doctest)模块可以直接提取注释中的代码并执行测试。
doctest严格按照Python交互式命令行的输入和输出来判断测试结果是否正确。只有测试异常的时候,可以用…表示中间一大段烦人的输出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Dict(dict):
'''
Simple dict but also support access as x.y style.

>>> d1 = Dict()
>>> d1['x'] = 100
>>> d1.x
100
>>> d1.y = 200
>>> d1['y']
200
>>> d2 = Dict(a=1, b=2, c='3')
>>> d2.c
'3'
>>> d2['empty']
Traceback (most recent call last):
...
KeyError: 'empty'
>>> d2.empty
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'empty'
'''
def __init__(self, **kw):
super(Dict, self).__init__(**kw)

def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)

def __setattr__(self, key, value):
self[key] = value

if __name__=='__main__':
import doctest
doctest.testmod()

如果程序正确运行,说明我们编写的doctest运行都是正确的。如果程序有问题,比如把__getattr__()方法注释掉,再运行就会报错:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
$ python mydict.py
**********************************************************************
File "mydict.py", line 7, in __main__.Dict
Failed example:
d1.x
Exception raised:
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'x'
**********************************************************************
File "mydict.py", line 13, in __main__.Dict
Failed example:
d2.c
Exception raised:
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'c'
**********************************************************************

注意到最后两行代码。当模块正常导入时,doctest不会被执行。只有在命令行运行时,才执行doctest。所以,不必担心doctest会在非测试环境下执行。

doctest非常有用,不但可以用来测试,还可以直接作为示例代码。通过某些文档生成工具,就可以自动把包含doctest的注释提取出来。用户看文档的时候,同时也看到了doctest。

IO编程

文件读写

在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件对象(写文件)。

读文件

以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符:

1
>>> f = open('/Users/michael/test.txt', 'r') #标示符'r'表示读

如果文件打开成功,接下来,调用read()方法可以一次读取文件的全部内容,Python把内容读到内存,用一个str对象表示:

1
2
>>> f.read()
'Hello, world!'

最后一步是调用close()方法关闭文件。文件使用完毕后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的:

1
>>> f.close()

由于文件读写时都有可能产生IOError,一旦出错,后面的f.close()就不会调用。所以,为了保证无论是否出错都能正确地关闭文件,我们可以使用try … finally来实现:

1
2
3
4
5
6
try:
f = open('/path/to/file', 'r')
print f.read()
finally:
if f:
f.close()

更简单的方法:
Python引入了with语句来自动帮我们调用close()方法:

1
2
with open('/path/to/file', 'r') as f:
print f.read()

这和前面的try … finally是一样的,但是代码更佳简洁,并且不必调用f.close()方法。

调用read()会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()可以每次读取一行内容,调用readlines()一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。

如果文件很小,read()一次性读取最方便;如果不能确定文件大小,反复调用read(size)比较保险;如果是配置文件,调用readlines()最方便:

1
2
for line in f.readlines():
print(line.strip()) # 把末尾的'\n'删掉

file-like Object

像open()函数返回的这种有个read()方法的对象,在Python中统称为file-like Object。除了file外,还可以是内存的字节流,网络流,自定义流等等。file-like Object不要求从特定类继承,只要写个read()方法就行。

StringIO就是在内存中创建的file-like Object,常用作临时缓冲。

二进制文件

前面讲的默认都是读取文本文件,并且是ASCII编码的文本文件。要读取二进制文件,比如图片、视频等等,用’rb’模式打开文件即可:

1
>>> f = open('/Users/michael/test.jpg', 'rb')

字符编码

要读取非ASCII编码的文本文件,就必须以二进制模式打开,再解码。比如GBK编码的文件:

1
2
3
4
5
6
>>> f = open('/Users/michael/gbk.txt', 'rb')
>>> u = f.read().decode('gbk')
>>> u
u'\u6d4b\u8bd5'
>>> print u
测试

每次都这么手动转换编码嫌麻烦(写程序怕麻烦是好事,不怕麻烦就会写出又长又难懂又没法维护的代码),Python还提供了一个codecs模块帮我们在读文件时自动转换编码,直接读出unicode:

1
2
3
import codecs
with codecs.open('/Users/michael/gbk.txt', 'r', 'gbk') as f:
f.read() # u'\u6d4b\u8bd5'

写文件

写文件和读文件是一样的,唯一区别是调用open()函数时,传入标识符’w’或者’wb’表示写文本文件或写二进制文件
可以反复调用write()来写入文件,但是务必要调用f.close()来关闭文件。当我们写文件时,操作系统往往不会立刻把数据写入磁盘,而是放到内存缓存起来,空闲的时候再慢慢写入。只有调用close()方法时,操作系统才保证把没有写入的数据全部写入磁盘。忘记调用close()的后果是数据可能只写了一部分到磁盘,剩下的丢失了。所以,还是用with语句来得保险:

1
2
with open('/Users/michael/test.txt', 'w') as f:
f.write('Hello, world!')

要写入特定编码的文本文件,请效仿codecs的示例,写入unicode,由codecs自动转换成指定编码。

操作文件和目录

Python内置的os模块可以直接调用操作系统提供的接口函数

1
2
3
>>> import os
>>> os.name # 操作系统名字
'posix' #如果是posix,说明系统是Linux、Unix或Mac OS X,如果是nt,就是Windows系统。

环境变量

在操作系统中定义的环境变量,全部保存在os.environ这个dict中,可以直接查看:

1
2
3
4
5
6
>>> os.environ
{'VERSIONER_PYTHON_PREFER_32_BIT': 'no', 'TERM_PROGRAM_VERSION': '326', 'LOGNAME': 'michael', 'USER': 'michael', 'PATH': '/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin:/usr/local/mysql/bin', ...}

#要获取某个环境变量的值,可以调用os.getenv()函数:
>>> os.getenv('PATH')
'/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin:/usr/local/mysql/bin'

操作文件和目录

1
2
3
4
5
6
7
8
9
10
11
# 查看当前目录的绝对路径:
>>> os.path.abspath('.')
'/Users/michael'
# 在某个目录下创建一个新目录,
# 首先把新目录的完整路径表示出来:
>>> os.path.join('/Users/michael', 'testdir')
'/Users/michael/testdir'
# 然后创建一个目录:
>>> os.mkdir('/Users/michael/testdir')
# 删掉一个目录:
>>> os.rmdir('/Users/michael/testdir')

把两个路径合成一个时,不要直接拼字符串,而要通过os.path.join()函数,这样可以正确处理不同操作系统的路径分隔符。

1
2
3
4
#在Linux/Unix/Mac下,os.path.join()返回这样的字符串:
part-1/part-2
#Windows下会返回这样的字符串:
part-1\part-2

拆分路径时,也不要直接去拆字符串,而要通过os.path.split()函数,这样可以把一个路径拆分为两部分,后一部分总是最后级别的目录或文件名:

1
2
>>> os.path.split('/Users/michael/testdir/file.txt')
('/Users/michael/testdir', 'file.txt')

os.path.splitext()可以直接让你得到文件扩展名,很多时候非常方便:

1
2
>>> os.path.splitext('/path/to/file.txt')
('/path/to/file', '.txt')

这些合并、拆分路径的函数并不要求目录和文件要真实存在,它们只对字符串进行操作。

文件操作使用下面的函数

1
2
3
4
# 对文件重命名:
>>> os.rename('test.txt', 'test.py')
# 删掉文件:
>>> os.remove('test.py')

复制文件的函数居然在os模块中不存在!原因是复制文件并非由操作系统提供的系统调用。理论上讲,我们通过上一节的读写文件可以完成文件复制,只不过要多写很多代码。

幸运的是shutil模块提供了copyfile()的函数,你还可以在shutil模块中找到很多实用函数,它们可以看做是os模块的补充。

利用Python的特性来过滤文件。

1
2
3
4
5
#列出当前目录下的所有目录
>>> [x for x in os.listdir('.') if os.path.isdir(x)]

#列出所有的.py文件
>>> [x for x in os.listdir('.') if os.path.isfile(x) and os.path.splitext(x)[1]=='.py']

序列化

把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python提供两个模块来实现序列化:cPickle和pickle。这两个模块功能是一样的,区别在于cPickle是C语言写的,速度快,pickle是纯Python写的,速度慢,跟cStringIO和StringIO一个道理。用的时候,先尝试导入cPickle,如果失败,再导入pickle:

1
2
3
4
try:
import cPickle as pickle
except ImportError:
import pickle

首先,我们尝试把一个对象序列化并写入文件:

1
2
3
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
"(dp0\nS'age'\np1\nI20\nsS'score'\np2\nI88\nsS'name'\np3\nS'Bob'\np4\ns."

pickle.dumps()方法把任意对象序列化成一个str,然后,就可以把这个str写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:

1
2
3
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()

当我们要把对象从磁盘读到内存时,可以先把内容读到一个str,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

1
2
3
4
5
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

JSON

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
| JSON类型 | Python类型 |
| :—–: | :—–: |
| {} | dict |
| [] | list |
| “string” | ‘str’或u’unicode’|
| 1234.56 | int或float |
| true/false | True/False |
| null | None |

Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:

1
2
3
4
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'

dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object。

要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:

1
2
3
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{u'age': 20, u'score': 88, u'name': u'Bob'}

有一点需要注意,就是反序列化得到的所有字符串对象默认都是unicode而不是str。由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str或unicode与JSON的字符串之间转换。

JSON进阶

Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:

1
2
3
4
5
6
7
8
9
10
import json

class Student(object):
def __init__(self, name, age, score):
self.name = name
self.age = age
self.score = score

s = Student('Bob', 20, 88)
print(json.dumps(s))

运行代码,毫不留情地得到一个TypeError:

1
2
3
Traceback (most recent call last):
...
TypeError: <__main__.Student object at 0x10aabef50> is not JSON serializable

错误的原因是Student对象不是一个可序列化为JSON的对象。

如果连class的实例对象都无法序列化为JSON,这肯定不合理!

别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:

https://docs.python.org/2/library/json.html#json.dumps

这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。

可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:

1
2
3
4
5
6
7
8
def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}

print(json.dumps(s, default=student2dict))

这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON。

不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:

1
print(json.dumps(s, default=lambda obj: obj.__dict__))

因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。

同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:

1
2
3
4
5
6
7
8
9
def dict2student(d):
return Student(d['name'], d['age'], d['score'])

json_str = '{"age": 20, "score": 88, "name": "Bob"}'
print(json.loads(json_str, object_hook=dict2student))

#运行结果如下:
<__main__.Student object at 0x10cd3c190>
#打印出的是反序列化的Student实例对象。

进程和线程

多进程

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# multiprocessing.py
import os

print 'Process (%s) start...' % os.getpid()
pid = os.fork()
if pid==0:
print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())
else:
print 'I (%s) just created a child process (%s).' % (os.getpid(), pid)

#运行结果如下:
Process (876) start...
I (876) just created a child process (877).
I am child process (877) and my parent is 876.

有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。

multiprocessing

multiprocessing模块就是跨平台版本的多进程模块。

multiprocessing模块提供了一个Process类来代表一个进程对象.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
print 'Run child process %s (%s)...' % (name, os.getpid())

if __name__=='__main__':
print 'Parent process %s.' % os.getpid()
p = Process(target=run_proc, args=('test',))
print 'Process will start.'
p.start()
p.join()
print 'Process end.'

#执行结果如下:
Parent process 928.
Process will start.
Run child process test (929)...
Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。

join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

Pool

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from multiprocessing import Pool
import os, time, random

def long_time_task(name):
print 'Run task %s (%s)...' % (name, os.getpid())
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print 'Task %s runs %0.2f seconds.' % (name, (end - start))

if __name__=='__main__':
print 'Parent process %s.' % os.getpid()
p = Pool()
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print 'Waiting for all subprocesses done...'
p.close()
p.join()
print 'All subprocesses done.'


#执行结果如下:
Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.

对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p = Pool(5)
就可以同时跑5个进程。

由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。

进程间通信

Process之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
while True:
value = q.get(True)
print 'Get %s from queue.' % value

if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()


#运行结果如下:
Put A to queue...
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.

在Unix/Linux下,multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing在Windows下调用失败了,要先考虑是不是pickle失败了。

多线程

由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程。

Python的标准库提供了两个模块:thread和threading,thread是低级模块,threading是高级模块,对thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import time, threading

# 新线程执行的代码:
def loop():
print 'thread %s is running...' % threading.current_thread().name
n = 0
while n < 5:
n = n + 1
print 'thread %s >>> %s' % (threading.current_thread().name, n)
time.sleep(1)
print 'thread %s ended.' % threading.current_thread().name

print 'thread %s is running...' % threading.current_thread().name
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print 'thread %s ended.' % threading.current_thread().name

#执行结果如下:
thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.

由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2…

Lock

多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。
于是我们通过锁来实现正确访问,由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
balance = 0
lock = threading.Lock()

def run_thread(n):
for i in range(100000):
# 先要获取锁:
lock.acquire()
try:
# 放心地改吧:
change_it(n)
finally:
# 改完了一定要释放锁:
lock.release()

当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try…finally来确保锁一定会被释放。

锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。

多核CPU

一个死循环线程会100%占用一个CPU。

如果有两个死循环线程,在多核CPU中,可以监控到会占用200%的CPU,也就是占用两个CPU核心。

要想把N核CPU的核心全部跑满,就必须启动N个死循环线程。

试试用Python写个死循环:

1
2
3
4
5
6
7
8
9
10
import threading, multiprocessing

def loop():
x = 0
while True:
x = x ^ 1

for i in range(multiprocessing.cpu_count()):
t = threading.Thread(target=loop)
t.start()

但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢?

因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。

ThreadLocal

在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。

但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦。
还可以用一个全局dict存放所有的Student对象,然后以thread自身作为key获得线程对应的Student对象;这种方式理论上是可行的,它最大的优点是消除了std对象在每层函数中的传递问题,但是,每个函数获取std的代码有点丑。

Python提供了ThreadLocal,不用查找dict,ThreadLocal帮你自动做这件事:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import threading

# 创建全局ThreadLocal对象:
local_school = threading.local()

def process_student():
print 'Hello, %s (in %s)' % (local_school.student, threading.current_thread().name)

def process_thread(name):
# 绑定ThreadLocal的student:
local_school.student = name
process_student()

t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()

#执行结果:
Hello, Alice (in Thread-A)
Hello, Bob (in Thread-B)

全局变量local_school就是一个ThreadLocal对象,每个Thread对它都可以读写student属性,但互不影响。你可以把local_school看成全局变量,但每个属性如local_school.student都是线程的局部变量,可以任意读写而互不干扰,也不用管理锁的问题,ThreadLocal内部会处理。

可以理解为全局变量local_school是一个dict,不但可以用local_school.student,还可以绑定其他变量,如local_school.teacher等等。

ThreadLocal最常用的地方就是为每个线程绑定一个数据库连接,HTTP请求,用户身份信息等,这样一个线程的所有调用到的处理函数都可以非常方便地访问这些资源。

进程 vs. 线程

首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。

如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。

如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。

多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。

多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。

多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。

在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。

线程切换

多任务一旦多到一个限度,就会消耗掉系统所有的资源,结果效率急剧下降

计算密集型 vs. IO密集型

计算密集型任务的特点是要进行大量的计算,消耗CPU资源,种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

IO密集型涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

异步IO

考虑到CPU和IO之间巨大的速度差异,一个任务在执行的过程中大部分时间都在等待IO操作,单进程单线程模型会导致别的任务无法并行执行,因此,我们才需要多进程模型或者多线程模型来支持多任务并发执行。

现代操作系统对IO操作已经做了巨大的改进,最大的特点就是支持异步IO。如果充分利用操作系统提供的异步IO支持,就可以用单进程单线程模型来执行多任务,这种全新的模型称为事件驱动模型,Nginx就是支持异步IO的Web服务器,它在单核CPU上采用单进程模型就可以高效地支持多任务。在多核CPU上,可以运行多个进程(数量与CPU核心数相同),充分利用多核CPU。由于系统总的进程数量十分有限,因此操作系统调度非常高效。用异步IO编程模型来实现多任务是一个主要的趋势。

分布式进程

在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。

Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。

举个例子:如果我们已经有一个通过Queue通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上。怎么用分布式进程实现?

原有的Queue可以继续使用,但是,通过managers模块把Queue通过网络暴露出去,就可以让其他机器的进程访问Queue了。

Python的分布式进程接口简单,封装良好,适合需要把繁重任务分布到多台机器的环境下。

注意Queue的作用是用来传递任务和接收结果,每个任务的描述数据量要尽量小。比如发送一个处理日志文件的任务,就不要发送几百兆的日志文件本身,而是发送日志文件存放的完整路径,由Worker进程再去共享的磁盘上读取文件。

正则表达式

正则表达式是一种用来匹配字符串的强有力的武器。它的设计思想是用一种描述性的语言来给字符串定义一个规则,凡是符合规则的字符串,我们就认为它“匹配”了,否则,该字符串就是不合法的。

在正则表达式中,如果直接给出字符,就是精确匹配。用\d可以匹配一个数字,\w可以匹配一个字母或数字,.可以匹配任意字符

要匹配变长的字符,在正则表达式中,用*表示任意个字符(包括0个),用+表示至少一个字符,用?表示0个或1个字符,用{n}表示n个字符,用{n,m}表示n-m个字符

\d{3}\s+\d{3,8}

  1. \d{3}表示匹配3个数字,例如’010’;
  2. \s可以匹配一个空格(也包括Tab等空白符),所以\s+表示至少有一个空格,例如匹配’ ‘,’ ‘等;
  3. \d{3,8}表示3-8个数字,例如’1234567’。

上面的正则表达式可以匹配以任意个空格隔开的带区号的电话号码。

如果要匹配’010-12345’这样的号码呢?由于’-‘是特殊字符,在正则表达式中,要用’\’转义,所以,上面的正则是\d{3}-\d{3,8}。

但是,仍然无法匹配’010 - 12345’,因为带有空格。所以我们需要更复杂的匹配方式。

进阶

要做更精确地匹配,可以用[]表示范围,比如:

  • [0-9a-zA-Z_]可以匹配一个数字、字母或者下划线;
  • [0-9a-zA-Z_]+可以匹配至少由一个数字、字母或者下划线组成的字符串,比如’a100’,’0_Z’,’Py3000’等等;
  • [a-zA-Z_][0-9a-zA-Z_]*可以匹配由字母或下划线开头,后接任意个由一个数字、字母或者下划线组成的字符串,也就是Python合法的变量;
  • [a-zA-Z_][0-9a-zA-Z_]{0, 19}更精确地限制了变量的长度是1-20个字符(前面1个字符+后面最多19个字符)。

A|B可以匹配A或B,所以(P|p)ython可以匹配’Python’或者’python’。

^表示行的开头,^\d表示必须以数字开头。

$表示行的结束,\d$表示必须以数字结束。

py也可以匹配’python’,但是加上^py$就变成了整行匹配,就只能匹配’py’

re模块

Python提供re模块,包含所有正则表达式的功能。由于Python的字符串本身也用\转义,所以要特别注意:

1
2
3
4
5
6
7
8
s = 'ABC\\-001' # Python的字符串
# 对应的正则表达式字符串变成:
# 'ABC\-001'

#因此我们强烈建议使用Python的r前缀,就不用考虑转义的问题了:
s = r'ABC\-001' # Python的字符串
# 对应的正则表达式字符串不变:
# 'ABC\-001'

1
2
3
4
5
6
match()方法判断是否匹配,如果匹配成功,返回一个Match对象,否则返回None。
>>> import re
>>> re.match(r'^\d{3}\-\d{3,8}$', '010-12345')
<_sre.SRE_Match object at 0x1026e18b8>
>>> re.match(r'^\d{3}\-\d{3,8}$', '010 12345')
>>>

常见的判断方法就是:

1
2
3
4
5
test = '用户输入的字符串'
if re.match(r'正则表达式', test):
print 'ok'
else:
print 'failed'

切分字符串

1
2
3
4
>>> re.split(r'正则表达式', '切分字符串')

>>> re.split(r'[\s\,\;]+', 'a,b;; c d')
['a', 'b', 'c', 'd']

分组

正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(Group)。

1
2
3
4
5
6
7
8
9
>>> m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
>>> m
<_sre.SRE_Match object at 0x1026fb3e8>
>>> m.group(0)
'010-12345'
>>> m.group(1)
'010'
>>> m.group(2)
'12345'

如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。

注意到group(0)永远是原始字符串,group(1)、group(2)……表示第1、2、……个子串。

贪婪匹配

正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的0:

1
2
>>> re.match(r'^(\d+)(0*)$', '102300').groups()
('102300', '')

由于\d+采用贪婪匹配,直接把后面的0全部匹配了,结果0*只能匹配空字符串了。

必须让\d+采用非贪婪匹配(也就是尽可能少匹配),才能把后面的0匹配出来,加个?就可以让\d+采用非贪婪匹配:

1
2
>>> re.match(r'^(\d+?)(0*)$', '102300').groups()
('1023', '00')

编译

当我们在Python中使用正则表达式时,re模块内部会干两件事情:

  1. 编译正则表达式,如果正则表达式的字符串本身不合法,会报错;
  2. 用编译后的正则表达式去匹配字符串。

如果一个正则表达式要重复使用几千次,出于效率的考虑,我们可以预编译该正则表达式,接下来重复使用时就不需要编译这个步骤了,直接匹配

1
2
3
4
5
6
7
8
>>> import re
# 编译:
>>> re_telephone = re.compile(r'^(\d{3})-(\d{3,8})$')
# 使用:
>>> re_telephone.match('010-12345').groups()
('010', '12345')
>>> re_telephone.match('010-8086').groups()
('010', '8086')

编译后生成Regular Expression对象,由于该对象自己包含了正则表达式,所以调用对应的方法时不用给出正则字符串。

常用内建模块

collections

collections是Python内建的一个集合模块,提供了许多有用的集合类。

namedtuple

namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

1
2
3
4
5
6
7
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

1
2
3
4
5
6
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

1
2
3
4
5
6
7
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

1
2
3
4
5
6
7
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

OrderedDict的Key会按照插入的顺序排列,不是Key本身排序。
OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity

def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print 'remove:', last
if containsKey:
del self[key]
print 'set:', (key, value)
else:
print 'add:', (key, value)
OrderedDict.__setitem__(self, key, value)

Counter

Counter是一个简单的计数器,例如,统计字符出现的个数:

1
2
3
4
5
6
7
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})

Counter实际上也是dict的一个子类,上面的结果可以看出,字符’g’、’m’、’r’各出现了两次,其他字符各出现了一次。

base64

struct

hashlib

itertools

XML

HTMLParser

常用第三方模块

除了内建的模块外,Python还有大量的第三方模块。

基本上,所有的第三方模块都会在PyPI 上注册,只要找到对应的模块名字,即可用easy_install或者pip安装。

PIL

图形界面

Python支持多种图形界面的第三方库,包括:Tk,wxWidgets,Qt,GTK
Python自带的库是支持Tk的Tkinter,无需安装任何包,就可以直接使用。

Tkinter

第一步是导入Tkinter包的所有内容:

1
from Tkinter import *

第二步是从Frame派生一个Application类,这是所有Widget的父容器:

1
2
3
4
5
6
7
8
9
10
11
class Application(Frame):
def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()
self.createWidgets()

def createWidgets(self):
self.helloLabel = Label(self, text='Hello, world!')
self.helloLabel.pack()
self.quitButton = Button(self, text='Quit', command=self.quit)
self.quitButton.pack()

在GUI中,每个Button、Label、输入框等,都是一个Widget。Frame则是可以容纳其他Widget的Widget,所有的Widget组合起来就是一棵树。

pack()方法把Widget加入到父容器中,并实现布局。pack()是最简单的布局,grid()可以实现更复杂的布局。

在createWidgets()方法中,我们创建一个Label和一个Button,当Button被点击时,触发self.quit()使程序退出。

第三步,实例化Application,并启动消息循环:

1
2
3
4
5
app = Application()
# 设置窗口标题:
app.master.title('Hello World')
# 主消息循环:
app.mainloop()

GUI程序的主线程负责监听来自操作系统的消息,并依次处理每一条消息。因此,如果消息处理非常耗时,就需要在新线程中处理。

网络编程

TCP/IP简介

IP协议负责把数据从一台计算机通过网络发送到另一台计算机。数据被分割成一小块一小块,然后通过IP包发送出去。由于互联网链路复杂,两台计算机之间经常有多条线路,因此,路由器就负责决定如何把一个IP包转发出去。IP包的特点是按块发送,途径多个路由,但不保证能到达,也不保证顺序到达。

TCP协议则是建立在IP协议之上的。TCP协议负责在两台计算机之间建立可靠连接,保证数据包按顺序到达。TCP协议会通过握手建立连接,然后,对每个IP包编号,确保对方按顺序收到,如果包丢掉了,就自动重发。

一个IP包除了包含要传输的数据外,还包含源IP地址和目标IP地址,源端口和目标端口。
两台计算机通信时,只发IP地址是不够的,因为同一台计算机上跑着多个网络程序。每个网络程序都向操作系统申请唯一的端口号,这样,两个进程在两台计算机之间建立网络连接就需要各自的IP地址和各自的端口号。

TCP编程

客户端

创建一个基于TCP连接的Socket

1
2
3
4
5
6
# 导入socket库:
import socket
# 创建一个socket:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# 建立连接:
s.connect(('www.sina.com.cn', 80))

创建Socket时,AF_INET指定使用IPv4协议,如果要用更先进的IPv6,就指定为AF_INET6。SOCK_STREAM指定使用面向流的TCP协议。客户端要主动发起TCP连接,必须知道服务器的IP地址和端口号。

怎么知道服务器的端口号呢?
作为服务器,提供什么样的服务,端口号就必须固定下来。由于我们想要访问网页,因此新浪提供网页服务的服务器必须把端口号固定在80端口,因为80端口是Web服务的标准端口。其他服务都有对应的标准端口号,例如SMTP服务是25端口,FTP服务是21端口,等等。端口号小于1024的是Internet标准服务的端口,端口号大于1024的,可以任意使用。

TCP连接创建的是双向通道,双方都可以同时给对方发数据。但是谁先发谁后发,怎么协调,要根据具体的协议来决定。例如,HTTP协议规定客户端必须先发请求给服务器,服务器收到后才发数据给客户端。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 发送数据:
s.send('GET / HTTP/1.1\r\nHost: www.sina.com.cn\r\nConnection: close\r\n\r\n')

# 接收数据:
buffer = []
while True:
# 每次最多接收1k字节:
d = s.recv(1024)
if d:
buffer.append(d)
else:
break
data = ''.join(buffer)

# 关闭连接:
s.close()

接收数据时,调用recv(max)方法,一次最多接收指定的字节数,因此,在一个while循环中反复接收,直到recv()返回空数据,表示接收完毕,退出循环。

接收到的数据包括HTTP头和网页本身,我们只需要把HTTP头和网页分离一下,把HTTP头打印出来,网页内容保存到文件:

1
2
3
4
5
header, html = data.split('\r\n\r\n', 1)
print header
# 把接收的数据写入文件:
with open('sina.html', 'wb') as f:
f.write(html)

现在,只需要在浏览器中打开这个sina.html文件,就可以看到新浪的首页了。

服务器

服务器进程首先要绑定一个端口并监听来自其他客户端的连接。如果某个客户端连接过来了,服务器就与该客户端建立Socket连接,随后的通信就靠这个Socket连接了。

所以,服务器会打开固定端口(比如80)监听,每来一个客户端连接,就创建该Socket连接。由于服务器会有大量来自客户端的连接,所以,服务器要能够区分一个Socket连接是和哪个客户端绑定的。一个Socket依赖4项:服务器地址、服务器端口、客户端地址、客户端端口来唯一确定一个Socket。

但是服务器还需要同时响应多个客户端的请求,所以,每个连接都需要一个新的进程或者新的线程来处理,否则,服务器一次就只能服务一个客户端了。

创建一个基于IPv4和TCP协议的Socket:

1
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

然后,我们要绑定监听的地址和端口。服务器可能有多块网卡,可以绑定到某一块网卡的IP地址上,也可以用0.0.0.0绑定到所有的网络地址,还可以用127.0.0.1绑定到本机地址。127.0.0.1是一个特殊的IP地址,表示本机地址,如果绑定到这个地址,客户端必须同时在本机运行才能连接,也就是说,外部的计算机无法连接进来。

端口号需要预先指定。因为我们写的这个服务不是标准服务,所以用9999这个端口号。请注意,小于1024的端口号必须要有管理员权限才能绑定:

1
2
# 监听端口:
s.bind(('127.0.0.1', 9999))

紧接着,调用listen()方法开始监听端口,传入的参数指定等待连接的最大数量:

1
2
s.listen(5)
print 'Waiting for connection...'

接下来,服务器程序通过一个永久循环来接受来自客户端的连接,accept()会等待并返回一个客户端的连接:

1
2
3
4
5
6
while True:
# 接受一个新连接:
sock, addr = s.accept()
# 创建新线程来处理TCP连接:
t = threading.Thread(target=tcplink, args=(sock, addr))
t.start()

每个连接都必须创建新线程(或进程)来处理,否则,单线程在处理连接的过程中,无法接受其他客户端的连接:

1
2
3
4
5
6
7
8
9
10
11
def tcplink(sock, addr):
print 'Accept new connection from %s:%s...' % addr
sock.send('Welcome!')
while True:
data = sock.recv(1024)
time.sleep(1)
if data == 'exit' or not data:
break
sock.send('Hello, %s!' % data)
sock.close()
print 'Connection from %s:%s closed.' % addr

连接建立后,服务器首先发一条欢迎消息,然后等待客户端数据,并加上Hello再发送给客户端。如果客户端发送了exit字符串,就直接关闭连接。

要测试这个服务器程序,我们还需要编写一个客户端程序:

1
2
3
4
5
6
7
8
9
10
11
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# 建立连接:
s.connect(('127.0.0.1', 9999))
# 接收欢迎消息:
print s.recv(1024)
for data in ['Michael', 'Tracy', 'Sarah']:
# 发送数据:
s.send(data)
print s.recv(1024)
s.send('exit')
s.close()

UDP编程

TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据。相对TCP,UDP则是面向无连接的协议。

使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号,就可以直接发数据包。但是,能不能到达就不知道了。

虽然用UDP传输数据不可靠,但它的优点是和TCP比,速度快,对于不要求可靠到达的数据,就可以使用UDP协议。

我们来看看如何通过UDP协议传输数据。和TCP类似,使用UDP的通信双方也分为客户端和服务器。服务器首先需要绑定端口:

1
2
3
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# 绑定端口:
s.bind(('127.0.0.1', 9999))

创建Socket时,SOCK_DGRAM指定了这个Socket的类型是UDP。绑定端口和TCP一样,但是不需要调用listen()方法,而是直接接收来自任何客户端的数据:

1
2
3
4
5
6
print 'Bind UDP on 9999...'
while True:
# 接收数据:
data, addr = s.recvfrom(1024)
print 'Received from %s:%s.' % addr
s.sendto('Hello, %s!' % data, addr)

recvfrom()方法返回数据和客户端的地址与端口,这样,服务器收到数据后,直接调用sendto()就可以把数据用UDP发给客户端。

服务器绑定UDP端口和TCP端口互不冲突,也就是说,UDP的9999端口与TCP的9999端口可以各自绑定。

电子邮件

电子邮件软件被称为MUA:Mail User Agent——邮件用户代理
Email服务提供商MTA:Mail Transfer Agent——邮件传输代理
Email投递到邮件的最终目的地MDA:Mail Delivery Agent——邮件投递代理

电子邮件的发送接收流程:

1
发件人 -> MUA -> MTA -> MTA -> 若干个MTA -> MDA <- MUA <- 收件人

要编写程序来发送和接收邮件,本质上就是:

  1. 编写MUA把邮件发到MTA
  2. 编写MUA从MDA上收邮件

发邮件时,MUA和MTA使用的协议就是SMTP:Simple Mail Transfer Protocol,后面的MTA到另一个MTA也是用SMTP协议。

收邮件时,MUA和MDA使用的协议有两种:POP:Post Office Protocol,目前版本是3,俗称POP3;IMAP:Internet Message Access Protocol,目前版本是4,优点是不但能取邮件,还可以直接操作MDA上存储的邮件,比如从收件箱移到垃圾箱,等等。

SMTP发送邮件

POP3收取邮件

收取邮件分两步:

第一步:用poplib把邮件的原始文本下载到本地;

第二部:用email解析原始文本,还原为邮件对象。

访问数据库

表是数据库中存放关系数据的集合,一个数据库里面通常都包含多个表,表和表之间通过外键关联。
Python定义了一套操作数据库的API接口,任何数据库要连接到Python,只需要提供符合Python标准的数据库驱动即可。

要操作关系数据库,首先需要连接到数据库,一个数据库连接称为Connection;
连接到数据库后,需要打开游标,称之为Cursor,通过Cursor执行SQL语句,然后获得执行结果。

使用SQLite

SQLite是一种嵌入式数据库,它的数据库就是一个文件。由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成,Python就内置了SQLite3。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# 导入SQLite驱动:
>>> import sqlite3
# 连接到SQLite数据库
# 数据库文件是test.db
# 如果文件不存在,会自动在当前目录创建:
>>> conn = sqlite3.connect('test.db')
# 创建一个Cursor:
>>> cursor = conn.cursor()
# 执行一条SQL语句,创建user表:
>>> cursor.execute('create table user (id varchar(20) primary key, name varchar(20))')
<sqlite3.Cursor object at 0x10f8aa260>
# 继续执行一条SQL语句,插入一条记录:
>>> cursor.execute('insert into user (id, name) values (\'1\', \'Michael\')')
<sqlite3.Cursor object at 0x10f8aa260>
# 通过rowcount获得插入的行数:
>>> cursor.rowcount
1
# 关闭Cursor:
>>> cursor.close()
# 提交事务:
>>> conn.commit()
# 关闭Connection:
>>> conn.close()

#查询记录:
>>> conn = sqlite3.connect('test.db')
>>> cursor = conn.cursor()
# 执行查询语句:
>>> cursor.execute('select * from user where id=?', ('1',))
<sqlite3.Cursor object at 0x10f8aa340>
# 获得查询结果集:
>>> values = cursor.fetchall()
>>> values
[(u'1', u'Michael')]
>>> cursor.close()
>>> conn.close()

使用Python的DB-API时,只要搞清楚Connection和Cursor对象,打开后一定记得关闭,就可以放心地使用。

使用Cursor对象执行insert,update,delete语句时,执行结果由rowcount返回影响的行数,就可以拿到执行结果。

使用Cursor对象执行select语句时,通过featchall()可以拿到结果集。结果集是一个list,每个元素都是一个tuple,对应一行记录。

如果SQL语句带有参数,那么需要把参数按照位置传递给execute()方法,有几个?占位符就必须对应几个参数,例如:

1
cursor.execute('select * from user where name=? and pwd=?', ('abc', '123456'))

使用MySQL

SQLite的特点是轻量级、可嵌入,但不能承受高并发访问,适合桌面和移动应用。而MySQL是为服务器端设计的数据库,能承受高并发访问,同时占用的内存也远远大于SQLite。

Python有两个MySQL驱动:

  • mysql-connector-python:是MySQL官方的纯Python驱动;
  • MySQL-python:是封装了MySQL C驱动的Python驱动。

以mysql-connector-python为例,演示如何连接到MySQL服务器的test数据库:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# 导入MySQL驱动:
>>> import mysql.connector
# 注意把password设为你的root口令:
>>> conn = mysql.connector.connect(user='root', password='password', database='test', use_unicode=True)
>>> cursor = conn.cursor()
# 创建user表:
>>> cursor.execute('create table user (id varchar(20) primary key, name varchar(20))')
# 插入一行记录,注意MySQL的占位符是%s:
>>> cursor.execute('insert into user (id, name) values (%s, %s)', ['1', 'Michael'])
>>> cursor.rowcount
1
# 提交事务:
>>> conn.commit()
>>> cursor.close()
# 运行查询:
>>> cursor = conn.cursor()
>>> cursor.execute('select * from user where id = %s', ('1',))
>>> values = cursor.fetchall()
>>> values
[(u'1', u'Michael')]
# 关闭Cursor和Connection:
>>> cursor.close()
True
>>> conn.close()

MySQL的SQL占位符是%s;
通常我们在连接MySQL时传入use_unicode=True,让MySQL的DB-API始终返回Unicode。

使用SQLAlchemy

ORM技术:Object-Relational Mapping,把关系数据库的表结构映射到对象上。

Web开发

WSGI接口

Web应用的本质

  1. 浏览器发送一个HTTP请求;
  2. 服务器收到请求,生成一个HTML文档;
  3. 服务器把HTML文档作为HTTP响应的Body发送给浏览器;
  4. 浏览器收到HTTP响应,从HTTP Body取出HTML文档并显示。

使用WEB框架